COURSE INFORMATION FORM

Publish in college catalog?

Yes ☑ No □

Course Title (Maximum of 48 characters) General Physics I							
Department/Course Number PHYS& 114	Effect	ive Quarter Win	nter 2018				
Credits 5 Variable No ☑ Yes □		tive Unit Code: t: Physical Scier	GP nces				
Multiple Versions No ☑ Yes □	, , Maxi	mum Class Size _	24				
Long Course Description (for college catalog): (NOTE: Maximum of 995 characters) (NS-L) First course in a one-year algebra-based General Physics sequence (PHYS& 114-116). Topics include motion, force, momentum and energy.							
Short Course Description (for class schedule): (NOTE: Maximum of 240 characters) First course in a one-year algebra-based General Physics sequence (PHYS& 114-116). Topics include motion, force, momentum and energy.							
Prerequisites:	Pass/Fail Option Available?		Yes ☑	No □			
Eligibility for ENGL& 101; and completion of (or concurrent enrollment in) MATH& 142 or	Course Challenge Exam Available?		Yes □	No ☑			
MATH& 144 or equivalent.	Can course be repeated for credit?		Yes □	No ☑			
Co-requisites: none	Number of repeats beyond initial enrollment: One ☐ Two ☐		Two □				
Course Intent (check all that apply):	Workload Information:						
☑ DTA Distribution/Skill	Contact Hour Lecture 40		Percent of Load 0.267				
Area Natural Science - Lab	Laboratory	÷ 200 =					
 ☑ DTA Elective (check one only) ☑ University Transfer List (A) ☐ Restricted Transfer (B/Gray area) 	Science Lab 20	÷ 180 =	0.111				
☐ Not allowable as an elective for DTA	Field Supervision	÷ 300 =					
☐ Fills requirement for(certificate/degree) ☐ Other	Comments	Total	0.378				

Student Learning Objectives:

Upon successful completion of this course, students will be able to:

- 1. Use simplifying assumptions, approximations, and estimations in describing and predicting events in the physical world.
- 2. Translate among various descriptive representations--graphic, analytic, and verbal--of physical phenomena.
- 3. Demonstrate sound problem solving strategies using graphical, verbal and analytical representations of physical phenomena.
- 4. Using Newton's Laws of Motion and the rules of kinematics develop and apply successful models describing the relations among forces on and motions of an object.
- 5. Apply the conservation energy and momentum to the description and prediction of the motion of objects.

Core Learning Outcome	Introduced (I) or Assessed (A)	If assessed, how is outcome measured?
CLO #1: Engage and take responsibility as active learners	I □ A ☑	Students will be actively engaged in small group self-guided lab exercises.
CLO #2: Think critically	I □ A ☑	Students will utilize quantitative and graphical analysis to describe physical phenomena and solve problems.
CLO #6: Demonstrate computer and technology proficiency	I ☑ A □	Students will use sensors that interface with computer hardware and software to acquire and interpret data for laboratory exercises

Program Specific Outcome Introduced (I) Assessed (A)	If assessed, how is outcome measured?
--	---------------------------------------

Apply quantitative analysis to solve problems	I □ A ☑	Students will utilize quantitative and graphical analysis to describe physical phenomena and solve problems.
Apply the scientific method	I □ A ☑	Students will apply basic physical principles to new situations in the lab to learn about different, related phenomena.